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ABSTRACT
Requirements engineering plays a pivotal role in the development
of safety-critical systems. However, the process is usually a manual
one and can lead to errors and inconsistencies in the requirements
that are not easily detectable. Formal methods are mathematically
rigorous techniques that can aid engineers to detect errors and
produce consistent and correct requirements. We survey a vari-
ety of requirements capture and analysis tools presented in the
literature. Specifically, we focus on tools that incorporate formal
methods techniques into their analyses. We discuss the various
tools’ strengths and weaknesses, identify current trends in require-
ments engineering research, and highlight open research questions.

CCS CONCEPTS
• Software and its engineering → Requirements analysis;
Specification languages.
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1 INTRODUCTION
Numerous studies have shown that for safety-critical systems, ver-
ification and validation costs account for a significant fraction of
the overall design costs. Most errors are introduced early in the
system development lifecycle, but often go undiscovered until late
in the development process, costing organizations time and money
[13, 32, 82]. To help address this issue, formal methods can be incor-
porated into the system design phase through formal requirements
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capture and analysis tools. These tools provide a means for com-
prehensive, automated analysis of system requirements for defects
(i.e., underspecification, contradictions, etc.), allowing the discov-
ery of errors earlier in the development process. There are many
such tools in the literature, all fulfilling the same general task but
with slight strategic and theoretical variations. Thus, a systematic
overview of the current tools, as well as a discussion of green areas
for further improvement, is desired.

Requirements engineering is indispensable in the development
of safety-critical systems. Safety-critical software development stan-
dards, like DO-178C [86], outline the guidelines and requirements
for the certification of software used in civil aviation systems. It
provides guidance on the requirements engineering process and
characterizes objectives related to various types of requirements1.
DO-178C also includes objective tables related to the development
and analysis of these requirements. For example, one objective
states “High-level requirements are accurate and consistent.” Further
sections detail the meaning of accuracy and consistency for high-
level requirements: “The objective is to ensure that each high-level
requirement is accurate, unambiguous, and sufficiently detailed, and
that the requirements do not conflict with each other,” and similarly
for low-level requirements. The NASA Systems Engineering Pro-
cesses and Requirements document [77] and the FAA Requirements
Engineering Management Handbook [57] also provide guidelines
and best practices for the requirements engineering process. They
emphasize the importance of systematically eliciting and captur-
ing requirements and ensuring that requirements are free of con-
flict. The documents highlight the need for a thorough analysis
of requirements to ensure they are complete and unambiguous.
However, none of them provide clear definitions of the properties
requirements should satisfy.

In this paper, we contribute:

(𝑖) a scientific, systematic overview of formal requirements cap-
ture and analysis tools in the literature;

(𝑖𝑖) a summary of the various tools’ properties and capabilities;
and

(𝑖𝑖𝑖) identification of current trends and open research questions
in formal requirements engineering.

1Types of requirements include system requirements, High Level Requirements (HLRs),
Low Level Requirements (LLRs), derived requirements, software requirements, safety-
related requirements, airworthiness requirements, inter-version compatibility re-
quirements, functional requirements, operational requirements, timing requirements,
partitioning requirements, failure detection requirements, and safety monitoring
requirements.
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2 PRELIMINARIES
We introduce some relevant concepts.

Definition 1. A software or system requirement describes an
intended behavior or property of the software or system. Requirements
are expressed in natural language but can be formalized into an unam-
biguous statement (called a formal requirement or specification).

Traditionally, formal requirements are stated in (potentially a
fragment of) a formal logic such as first order logic or linear temporal
logic (LTL). More details about LTL can be found elsewhere [49].
The process of gathering requirements, formalizing them, and per-
forming analyses is called requirements capture and analysis. A set of
requirements can be analyzed for various desired properties. These
properties are described below—this discussion is purposefully kept
informal, as precise definitions vary across tools.

• A requirement is atomic if it describes a single, indivisible
aspect of the system.

• Consistency means that the set of requirements does not
contain logical contradictions (i.e., the set of requirements is
satisfiable).

• Realizability means that the set of requirements describes
a system that is actually implementable. More concretely,
this is true if and only if for all possible sets of input values,
there exists some set of output values that satisfies all re-
quirements. (Both realizability and consistency are types of
conflict analysis.)

• Completeness means that the requirements specify all rele-
vant system behaviors.

• Correctness is the slippery notion that a requirement cap-
tures its intended meaning, often involving interactions with
stakeholders.

• Independence means that no requirement is implied by other
requirements (i.e., the requirements are free of redundancy).

• Contingency means that each requirement is satisfiable and
falsifiable.

• A requirement demonstrates vacuity if part of the require-
ment definition has no bearing on whether or not the re-
quirement is satisfied.

To illustrate the types of requirements defects that formal meth-
ods tools seek to detect, we give examples of how the above proper-
ties intuitively apply to a set of natural-language requirements. We
consider the use case of a door to an initially empty room with a
counter that increments when a person enters the room and decre-
ments when a person leaves the room. Entrance and exit sensors
detect the actions and update the counter. The stakeholders need
the counter to correctly reflect the number of people in the room at
any given time. For this use case, we present example requirements
to show how each of the aforementioned properties can be violated:

• Consider the requirement:
– R0 The entry sensor shall increase the counter by one for
each detected entry and decrease the counter by one for
each detected exit.

The requirement is not atomic because it can be divided into
two functionalities: incrementing for entrances and decre-
menting for exits.

• Consider the assumption and two requirements:

– A0 At least one person enters the room.
– R1 The entry sensor shall increase the counter by one for
each detected entry.

– R2 The entry sensor shall decrease the counter by one for
each detected entry.

The set is inconsistent because the entry sensor cannot both
increase and decrease the counter at the same time for each
detected entry.

• Consider the two requirements:
– R2 The entry sensor shall decrease the counter by one for
each detected entry.

– R3 At any time, the counter shall correctly reflect the total
number of people who have entered the room.

The set is consistent because it possible to simultaneously
satisfy both requirements–specifically, both are satisfied if
nobody ever enters the room. However, the set is not realiz-
able because if at least one person enters the room, then R2
and R3 cannot both be satisfied.

• Consider the two requirements:
– R3 At any time, the counter shall correctly reflect the total
number of people who have entered the room.

– R4 The entry sensor shall increase the counter by one for
each detected entry.

The set is incomplete because important behavior such as
recording the exit of people from the room have not been
specified.

• Consider the requirement:
– R3 At any time, the counter shall correctly reflect the total
number of people who have entered the room.

R3 is incorrect because it does not capture the intended
behavior of the stakeholders where the stakeholders want
the counter to always show the exact number of people
inside the room.

• Consider the two requirements:
– R1 The entry sensor shall increase the counter by one for
each detected entry.

– R5 The entry sensor shall increase the counter by 20 for
each detected entry.

The set is not independent because R1 implies R5.
• Consider the requirement:
– R6 The exit sensor shall decrease the counter by one for
each detected exit.

R6 is contingent because there exist implementations that
satisfy and falsify the requirement. For example, an imple-
mentation that erroneously increases the counter at each
detected exit falsifies the requirement. Additionally, an im-
plementation that correctly decreases the counter by one for
each detected exit satisfies the requirement.

• Consider the requirements:
– R7 At any time, if the number of people who have exited
the room is greater than the number of people who have
entered the room, then the counter shall correctly reflect
the total number of people who are in the room.

– R8 The room shall be initially empty.
R7 is vacuously true because the room is initially empty
(from R8)—it can never be the case that the number of peo-
ple who exited is greater than the number of people who
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entered. Therefore, the consequent of the implication (“the
counter shall correctly...") has no impact on whether or not
the requirement is satisfied.

3 METHODOLOGY
We performed a systematic literature review through a combination
of (𝑖) a manual search and (𝑖𝑖) an automated search of digital
libraries.

The manual search began with manual identification of relevant
papers through prior domain knowledge. Using Google Scholar, we
iteratively expanded the set of papers we surveyed by manually
identifying relevant citations of the current set (as well as relevant
papers who cite papers in the current set) until reaching a fixpoint.
This yielded 25 papers (representing 18 tools) as a benchmark set.

Based on an analysis of the benchmark set, we constructed the
following search string:

“((“requirements engineering”
OR “requirements analysis”)

AND (“formal analysis”
OR “formal verification”
OR “formal validation”
OR “formally verify”
OR “formal method*”)

AND (“tool” OR “tools” OR “framework*”)
AND ((“consisten*” AND (“complete*” OR “vacuity”))

OR “realizability”))”.

Additionally, the searches were filtered for freely available con-
ference papers and journal articles in English that were published
from 2005 on. IEEE Xplore, ACM Digital Library, and Springer Link
returned 961, 435, and 900 papers (respectively) for a total of 2, 296
papers. We achieved a sensitivity of ≥ 80% with respect to the
benchmark set, surpassing the threshold prescribed by [108]2.

After manual review of the papers generated from the automated
search, we identified 44 relevant tools. Combining with the tools
from the manual search, we found a total of 59 distinct tools.

In order to be classified as “relevant,” papers must demonstrate
an implemented tool that performs formal analysis of requirements.
More specifically, we omitted tools that were purely dedicated to re-
quirements capture without any analysis (e.g., [74]), tools that were
clearly designed to be synthesis tools rather than requirements anal-
ysis tools (e.g., [66]), tools that only performed non-formal analyses
(e.g., using natural language processing (NLP) for inconsistency
detection), and conceptions of algorithms or approaches that were
not yet implemented.

4 RESULTS
We provide an overview of the requirements capture and analysis
tools from our literature search. First, we present general discus-
sions of all the tools by categorization, where we highlight a variety
of general technical approaches. We then present a table summariz-
ing each tool’s properties, followed by a more detailed discussion

2To calculate sensitivity, we divided the number of tools present in the benchmark
set that were found by the automated search by the the total number of tools in the
benchmark set that were indexed in at least one of the libraries. Two tools were not
indexed, and incorporating them into the sensitivity calculation still yields ≥ 70%.

of a select few interesting tools, and finally an overview of research
trends and future directions.

4.1 Tool Descriptions
The largest group of tools are instrumentations of general-purpose
model checkers [1, 4, 6–8, 11, 15, 18, 29, 31, 34, 38, 39, 43, 44, 53, 68,
72, 73, 80, 83, 93, 94, 99, 106]. These tools translate a set of input
requirements to the backendmodel checker’s specification language
and construct various model checking queries to check the desired
properties. For example, consider a set of 𝑛 specifications {𝜑𝑖 | 𝑖 ∈
N}. A simple consistency check would invoke the model checking
query ¬(𝜑1 ∧ · · · ∧ 𝜑𝑛) against a universal model that satisfies all
traces. A counterexample demonstrates that the specifications are
consistent, and they are inconsistent otherwise.

Another large group of tools are synthesis tools with debugging
support for requirements analysis [27, 42, 62, 65, 76, 104]. They are
based on the synthesis of a reactive system given requirements
formulated in LTL, often involving fragments with tractable algo-
rithms such as GR(1) [81] and GXW [19], as well as translations to
Büchi automata. The success (resp., failure) of the synthesis algo-
rithm directly corresponds to the realizability (resp., unrealizability)
of the specification. Realizability analysis is useful because it can
reveal hidden environmental assumptions. Note that realizability is
a stronger property than consistency, but the two only differ when
the system being modeled takes input from an environment that
controls some of the variables. The tools have a variety of ways to
debug unrealizable specifications— for example, a counterstrategy
describes the environment’s strategy to create situations where at
least one requirement must be falsified.

Another popular approach to capturing requirements involves
the class of ontology-based tools [2, 5, 23, 24, 47, 70, 71, 75, 85, 91, 92].
These tools fundamentally differ from the previously discussed
tools as they are based on a description logic rather than a temporal
logic. Description logics focus on types of entities and relationships
between them, rather than on an evolution of state over time. De-
scription logics have some drawbacks, mainly that (𝑖) they lack
temporal richness, and (𝑖𝑖) they rely onmanually predefined ontolo-
gies which represent knowledge domains. But, description logics
also have benefits. First, they allow analyses of language-related
concepts like ambiguity, noise, and latent domain knowledge. Sec-
ond, the analyses are relatively scalable and do not encounter state
space explosion as is possible in model checking. Third, there often
exists a natural translation from boilerplate natural language input
to description logic.

Another group is comprised of logic programming tools which
rely on formalisms like ASP and languages like Datalog [41, 46, 59,
72, 98]. An example tool was developed by Hall et al. [46], which
uses goal-directed s(CASP) as a reasoning engine. They use the
event calculus formalism [89] to perform commonsense reasoning
of failure scenarios in dynamic sytems by assuming dense real-
valued domains for time and other continuous physical properties.
They utilize capabilities of constraint-solving over reals CLP(R) [50]
available in s(CASP) to model a dense time domain. A unique aspect
of this tool is that it can test adequacy of requirements by encoding
known potential failure scenarios such as single event upsets to
the logic program and querying the system for consistency using
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abductive reasoning. They utilize domain knowledge for a more
comprehensive consistency check. However, the event calculus
formalism does not use temporal operators from LTL.

Some tools take a refinement-based approachwith the Event-B for-
malism [90, 96, 101]. A benefit of this approach is that requirements
can be decomposed and details can be added as the development
process matures. With refinement, the user can check if require-
ment decompositions are consistent and complete (both within a
requirement decomposition and across requirement decomposi-
tions).

A few tools are characterized by unrestricted natural language in-
put [35–37, 80]. In addition to formal reasoning, these tools involve
sophisticated NLP in the front end to produce the underlying formal-
ism. This involves clear trade-offs– unrestricted natural language
increases the scope of formalizable requirements and maximizes
user-friendliness (especially in a setting without formal methods ex-
perts), but may lead to an increase in analysis errors due to incorrect
generated formalisms.

Another strategy for user-friendliness involves UML input, ben-
efiting from developers’ previous experience with UML and al-
lowing developers to easily apply the tool to existing projects
[7, 15, 34, 97, 100, 106]. While some tools use features already
present in UML, some tools introduce an external constraint lan-
guage to formally express requirements.

We encountered several tools that utilized formal representations
for test generation [51, 61, 84, 103]. While these tools are somewhat
formal, they do not perform formal analysis of requirements, so we
will not discuss them in depth.

Finally, a wide range of tools do not cleanly fit into any of the
above categories, as they employ unique or custom backend rea-
soning engines [3, 14, 26, 28, 48, 55, 56, 63, 78, 87, 88, 95, 100, 102].
These tools reduce requirements analysis to, for example, graph al-
gorithms [55], abstract state machines (ASMs) [87], custom tableau
algorithms [26, 35], new formalisms [14], custom heuristics [100],
or database queries [71, 78]. Addionally, some tools [10, 12, 54]
involve multiple reasoning engines to analyze various properties.

4.2 Notable Tools
Many of the tools found in the literature review are research proto-
types that are no longer actively developed or used. In this section,
we highlight a few tools that are actively maintained and regularly
applied to real-world problems.

4.2.1 ARSENAL. The ARSENAL (Automatic Requirements Spec-
ification Extraction from Natural Language) framework [36, 37],
developed at SRI International and TTTech, uses a combination
of natural language processing (NLP) and formal methods (FM)
to map natural language requirements to formal representations.
This framework consists of two main stages, the NLP stage and the
FM stage. Core steps in the NLP stage involve using the Standard
Typed Dependency Parser [25] to detect semantic dependencies
in the text and convert the dependencies into a tabular, symbolic
intermediate representation (IR) that outlines properties of terms
and relationships between terms. The IR table is used to generate
a formal model that can be used by formal methods tools. First,
the IR table is translated into a SAL [9] model, which is a Kripke
structure-based model that can be passed as input to the SAL model

checker. Model checking techniques are used to check the satisfia-
bility of the model, which corresponds to a requirement consistency
check. Second, ARSENAL uses the IR table to generate logical spec-
ifications in a subclass of LTL called Generalized Reactivity (1),
or GR(1), which is known to be expressive but still amenable to
synthesis [81]. Synthesis techniques are algorithms to automati-
cally generate an implementation satisfying a given specification,
if possible. The success (resp., failure) of the synthesis algorithm
directly corresponds to the requirements being realizable (resp.,
unrealizable). If the specification is unrealizable, then ARSENAL
suggests candidate environmental assumptions that would make
the specification realizable.

4.2.2 ASSERT. The ASSERT (Analysis of Semantic Specifications
and Efficient generation of Requirements-based Tests) tool [23, 24,
58, 67, 70, 91] was developed by General Electric to assist with
formal requirements capture and analysis for aviation software.
The input language, called the SADL requirements language (SRL)
[23], is an extension of the Semantic Application Design Language
(SADL) [22] and was designed specifically for requirements capture
and analysis in ASSERT. SADL an ontology language based on set
theory and first order logic that unambiguously encodes informa-
tion about the model in question in terms of classes (sets of entities)
and properties (relationships between classes). The analysis engine,
called Requirements Analysis Engine (RAE) [64], is built on top of
the ACL2s theorem prover [16] and can reason about contingency,
independence, conflict, and completeness of requirements. Addi-
tionally, ASSERT performs requirements-based test case generation
by systematically generating tests that satisfy each requirement,
following DO-178C guidelines.

4.2.3 FRET. FRET (Formal Requirements Elicitation Tool) [38, 39,
53] is a requirements elicitation tool developed at NASA that fo-
cuses on the realizability of specifications of reactive systems. The
tool’s inputs are requirements formed in a structured natural lan-
guage called FRETish [40]. First, each FRETish requirement is trans-
lated into two representations, which are past- and future-time
metric temporal logic (MTL) formulae (MTL is similar to LTL, but
uses bounded temporal operators). The set of past-time MTL re-
quirements are translated into the synchronous dataflow language
Lustre [45], and then the Lustre model is then fed into the back-
end reasoning engines JKind [30] and Kind 2 [17] for realizability
analysis. On the other hand, the future-time MTL requirements
are formulated in a NuSMV [21] model, which is analyzed by the
NuSMV model checker. A distinguishing feature of FRET is its
front-end GUI, which helps the user debug realizability issues by in-
teracting with counterexample traces and visualizing relationships
between requirements.

4.2.4 SpeAR. SpeAR (Specification and Analysis of Requirements)
[29, 44] was developed by Collins Aerospace and AFRL to assist in
developing and analyzing system requirements. The input language
is a structured natural language with the semantics of past-time
LTL (LTL with only past-time temporal operators). The input lan-
guage has a natural translation to Lustre, which is fed into the JKind
model checker for backend analysis. Lustre models are hierarchi-
cally structured, where a top-level component contains system-level
inputs, outputs, and properties, and the behavior of the system is
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defined in lower-level components. JKind checks completeness by
performing compositional verification, which determines whether
the conjunction of all component-level requirements logically en-
tails each system-level requirement. JKind also checks consistency
in terms of a satisfiability query on component-level requirements.

4.2.5 Spectra. Spectra [65] is a specification language developed
by academic researchers at Tel Aviv University and the University
of Leicester that includes analysis tools (called Spectra tools) for re-
quirements analysis and controller synthesis. The Spectra language
is similar to Lustre [45], as it unambiguously defines the behavior
of reactive systems. Due to the input language’s syntax, there is a
straightforward translation to the GR(1) fragment of LTL, which
is amenable to synthesis [81]. Spectra tools applies the synthesis
algorithm, along with some custom heuristics, to determine the
realizability of the specification. If the specification is unrealizable,
Spectra computes an unrealizable core that contains a minimal set
of conflicting requirements. Additionally, Spectra presents a coun-
terstrategy, which is a description of how the environment can force
requirement violations, as well as a list of candidate assumptions
to make the specification realizable. Further, Spectra detects when
a specification can be trivially satisfied (i.e., when environmental
assumptions can be forcibly violated) as well as when requirements
contain vacuous expressions.

4.3 Tool Comparison
In Table 1, we present some details about each tool discovered in
our search. In particular, we outline each tool’s name and refer-
ences (column 1), information about the tools’ front- and back-end
strategies (columns 2, 3, 4, 6, 8), whether each tool is open source
(column 5), and whether or not each tool has been used in industry
or in some large case study (column 7). Information about industrial
use and/or case studies can be found from the references listed in
column 1.

4.4 Current Trends and Future Directions
Notably, very few tools (only ∼5% from Table 1) use an unrestricted
natural language input, while the rest require a structured input.
Many papers express the concern that natural language input can
lead to incorrect formalizations due to the wide range of potential
unrestricted natural language inputs (e.g., [11, 23, 38]). While this is
a legitimate concern, there is an overlooked dual concern that either
(𝑖) a structured input will be formulated incorrectly by the user, (𝑖𝑖)
only a subset of requirements will be fit into the defined structure,
or (𝑖𝑖𝑖) the constrained structure will dissuade system engineers
from using the tool altogether. In NLP, there is a trend of using
large language models (LLMs) to assist with translation from NL
to a formal representation (e.g., [60, 105]). LLMs are a good match
for such translations because they are strong at deconstructing
underlying semantic structure, and they have vast general-purpose
knowledge that does not require the user to supply a large training
data set (which is often not available in many domains, especially if
the formalism is niche). This is because LLMs can perform various
tasks using purely in-context learning, which only requires the
user to supply a handful of examples. Additionally, LLMs’ chatbot
functionality can assist with the formalization process through
various interactive steps. Using modern NLP strategies is thus a

promising area for future development of formal requirements
capture and analysis tools. On a related note, none of the papers
included a scientific study of usability outside of intuitive, informal
claims. In industry, tools requiring front-end formalization can get
push-back from non-formal methods experts, even if they seem
“usable" by formal methods experts and have been validated by a
case study. For tools with structured inputs, rigorous study about
the proportion of requirements that can be naturally formulated,
as well as comprehensive feedback from requirements engineers
without knowledge of formal methods, is desired.

Similarly, very few tools give a detailed discussion of scalability.
(A notable exception is Eddy [92], where an in-depth scalability
analysis demonstrated acceptable performance, even as the number
of requirements grew beyond the number tested in their main case
study.) In an industrial setting, projects often have hundreds or
thousands of requirements (that are often difficult to formalize),
and therefore scalability is of supreme importance to practitioners.
Establishing a set of large-scale, industry-relevant benchmarks
could help users compare different tools.

Model checking and synthesis algorithms based on variants of
FOL and LTL dominate back-end reasoning techniques (over 60%
of tools from Table 1). Description logics are less popular but still
notable due to their natural mapping to various problem domains.
However, none of these formalisms can analyze requirements of
systems that involve (𝑖) bounded-time temporal operators over
arbitrary points in time and (𝑖𝑖) span both discrete and continuous-
time domains—a concrete obstacle is the computational complexity
associated with such formalisms. Relevant formalisms include met-
ric temporal logic (MTL, explored in [7, 38, 39, 53]), signal temporal
logic, and hybrid timed automata . More work could be done to
identify (potentially domain-specific) fragments and algorithms to
expand the usage of these formalisms.

Lastly, although we gave an informal overview of analysis prop-
erties (e.g. consistency) in Section 2, formal definitions of such
terms differ greatly between tools. For the purposes of this study,
we take claims about the analysis capabilities of the various tools at
face value (e.g., if a paper claims that the implemented tool supports
consistency analysis, we have reported as such in Table 1 regardless
of their specific definition of “consistency.") Moreover, many papers
confuse “verification" and “validation", or use “consistency" in infor-
mal, confusing ways. The community should be careful to consult
multiple sources for terminology and stick to standard usages.

Threats to Validity. Despite our best efforts to be comprehensive,
our search realistically missed some tools. But, we argue that our
automated search of multiple digital libraries led to a relatively
large and representative set.

Additionally, it is possible that there exist tool capabilities that
were not reflected in our analysis due to a lack of adequate descrip-
tion or publicly available information.

5 RELATEDWORK
We briefly mention some related surveys of formal methods and
requirements engineering. Studies by Jones et al. [52] and Pandey
and Batra [79] are similar in spirit. However, [52] is now over 25
years old, and a fresh look is useful. Similarly, [79] is over 10 years
old, and they also focus on general approaches rather than specific
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Tool Input
language

Reasoning
Engine

Analysis
properties

Open
source?

Formalism Industry
use or
large
case
study

Notable
features

AGREE [31] AADL +
Lustre

JKind Consistency,
realizability

Yes Past LTL Yes Compositional rea-
soning

Alrajeh et al. [1] FOLTL Model
checker, in-
ductive logic
program-
ming (ILP)
learner

Completeness No Fluent
Linear
Temporal
Logic
(FLTL)

Yes Obstacle
analysis

Arcaini et al. [4] CTL NuSMV Consistency,
completeness,
minimality

Yes CTL Yes NA

ARSENAL [36,
37]

Natural
language
(NL)

SAL Consistency,
realizability

No GR(1) Yes Candidate
assumption
generation

AsmetaRE [87] Structured
NL

ASMETA Consistency Yes ASMs Yes Simulation

ASSERT [23, 24,
70, 91]

Structured
NL

ACL2s Contingency,
independence,
conflict,
completeness

No Set theory,
FOL

Yes Test
generation

Avdeenko &
Pustovalova
[5]; Garanina
& Borovikova
[33]

Structured
NL

Hermit Completeness,
consistency

Yes OWL, LTL No NA

Barnat et al. [8] LTL DiVinE Consistency,
redundancy,
completeness,
vacuity

No LTL Yes Suggest
missing
requirements

BTC Embedded-
Platform [11]

Structured
NL

Model
checker

Consistency,
vacuity,
completeness

No Simplified
universal
pattern [11]

Yes Test generation,
GUI requirement
visualization

B-Tropos [72] Graph-based
(graphical)

Model check-
ers, SCIFF ab-
ductive proof
procedure

Consistency No LTL, SCIFF
(logic
program-
ming)

Yes Property checking

CAMEmb-
Modeler [97]

UML VDMTools NA No VDM++ No Context boundary
analysis

CARL [35] NL Custom
tableau-
based
algorithm

Consistency No Nonmono-
tonic
proposi-
tional logic
(PL) with
predicates

Yes Scenario
consistency,
implied facts of
requirements

CDET [88] FOL Custom
DAG-based
algorithms

Consistency No FOL No Domain-specific
repair suggestions

CHASE [76] Structured
NL, NL

TuLiP Correctness,
completeness,
consistency,
realizability

Yes GR(1) Yes Reasons over time
intervals,
simulation

Table 1: Comparison of tools discovered in our search.
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Tool Input
language

Reasoning
Engine

Analysis
properties

Open
source?

Formalism Industry
use or
large
case
study

Notable
features

Chen et al. [18] SafeNL
(structured
NL)

MyCCSL Consistency No Clock
constraint
specifi-
cation
language

Yes NA

CLEAR [10] Structured
NL

SMT solvers,
model check-
ers, Acacia

Consistency,
completeness,
redundancy,
correctness,
realizability

No FOL, LTL Yes Test generation

Concern Model
Verifier [47]

OWL Jena Consistency,
completeness

No OWL Yes NA

DECIMAL [78] Tables + FOL SQL database Completeness,
consistency

No FOL Yes Support for product
line specifications

Degiovanni et
al. [26]

LTL Custom
algorithm

Consistency,
realizability

Yes LTL
Tableau,
string
counting

Yes Conflict likelihood
estimation

EARS-CTRL
[62]

Structured
NL

autoCode4
[20]

Correctness,
realizability

Yes GXW No NA

Eddy [92] Pseudo SQL HermiT Consistency No OWL Yes Demonstrated
scalability,
privacy policy
analysis

EuRailCheck
[15]

UML +
Structured
NL

NuSMV Consistency,
property
checking

No Fragment
of FOLTL
with RE

Yes Simulation

Traichaiya-
porn & Aoki,
Wakrime et al.
[96, 101]

Event-B Rodin Completeness,
consistency

Yes Event-B Yes Refinement
analysis

FRET [38, 39,
53]

Structured
NL

Kind 2 [17],
JKind[30],
NuSMV[21]

Consistency,
realizability

Yes past or
future MTL

Yes Conflict
visualization,
simulation

Garis et al. [34] UML Alloy Consistency Yes FOL No Alloy analyzer
graphical editing

Greenyer et al.
[42]

Modal
sequence
diagrams

Custom
synthesis
algorithm

Consistency,
realizability

No Büchi
automata

Yes Simulation,
incremental
synthesis

Greenyer, Shar-
ifloo et al. [43]

MSDs NuSMV Consistency No CTL Yes Support for product
line specifications

Hall et al. [46] Structured
NL

s(CASP)
solver

Consistency, ad-
equacy

No Event Cal-
culus, ASP

Yes NA

K.M. et al. [2] NL HermiT NA No SWRL Yes NL requirement
quality analysis,
latent domain
knowledge
discovery

Table 1: Comparison of tools discovered in our search (continued).
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Tool Input
language

Reasoning
Engine

Analysis
properties

Open
source?

Formalism Industry
use or
large
case
study

Notable
features

Lauenroth &
Pohl [56]

OVM + DRS Custom
model
checking
algorithms

Consistency No VOM, DRS,
PL, FSMs

Yes Product line
analysis

Li et al. [59] Structured
NL

clingcon Consistency No ASP Yes NA

MADES [7] UML +
MARTE

Zot Consistency,
correctness

Yes MTL Yes Simulation,
property checking

MBIPV [106] UML NuSMV Privacy
violations

Yes Kripke
structures +
CTL

Yes Privacy violation
analysis

Miller et al. [68] RSML−𝑒 ,
CTL, PVS

NuSMV, PVS Consistency,
completeness

No RSML−𝑒 ,
CTL, PVS

Yes Simulation,
property checking

MIRA [94] Structured
NL

SMT solvers,
model
checkers

Consistency,
completeness

Yes MSCs Yes Simulation, test
generation

Mokos et al.
[71]

Structured
NL

SPARQL Completeness,
consistency

No OWL Yes Measure noise &
ambiguity, domain
knowledge, extract
tacit knowledge,
property
checking

NAT2TEST
[14]

Structured
NL

Custom
algorithms

Consistency,
completeness,
reachability,
time lock

No DFRS, CSP Yes Test generation

Pi et al. [80] NL Model
checker

Consistency No LTL Yes Hierarchical heuris-
tic checking

Prema [48] Pseudocode Z3 Consistency No State
machines

Yes Simulation, Test
generation,
Requirement
visualization

RATSY [12, 54] Büchi
automata

NuSMV,
CUDD, Anzu

Consistency,
realizability,
correctness

Yes PSL Yes Trace manipulation,
counterstrategies,
countertraces, sim-
ulation, interactive
debugging game

REInDetector
[75]

Structured
NL

Pellet Consistency No OWL Yes Inconsistency
explanation

ReqV [99] Structured
NL

Aalta,
NuSMV

Consistency No LTL Yes Minimal subset of
conflicting
requirements

ReSA [63] Structured
NL

Z3 Consistency Yes PL Yes NA

Runde & Fay
[85]

Not specified Jess Consistency,
redundancy

No OWL Yes NA

Sikora et al.
[90]

Message
Sequence
Charts
(MSCs)

Custom
algorithms

Consistency No Interface
automata

No Refinement
checking

Table 1: Comparison of tools discovered in our search (continued).
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Tool Input
language

Reasoning
Engine

Analysis
properties

Open
source?

Formalism Industry
use or
large
case
study

Notable
features

Slugs [27] LTL Custom
GR(1)
synthesis
tool

Consistency,
realizability,
non-well-
separation

Yes GR(1) No Counterstrategy,
Assumption
weakening,
simulation

SpeAR v2.0 [29,
44]

Structured
NL

JKind Completeness,
consistency

Yes Past LTL Yes Compositional
reasoning

SpecCC [104] Structured
NL

G4LTL Consistency,
realizability

Yes LTL Yes NA

SpecPro [73] Structured
NL

POLSAT Consistency Yes LTL Yes Fault injection mod-
eling, minimal in-
consistent subsets

SpecScribe [83] Structured
NL

SAL Consistency,
completeness

No LTL No Property
checking

Spectra [65] Reactive
systems
language

Custom
GR(1)
synthesis
tool

Consistency,
realizability,
vacuity, non-
well-separation

Yes GR(1) Yes Unrealizable cores,
counterstrategies,
candidate
assumptions

Sukumaran et
al. [93]

UML SAL Correctness,
completeness,
consistency

No SAL
language

Yes Scenario
generation,
simulation

Thyssen &
Hummel [95]

RE tables Custom DFA
algorithms

Completeness,
consistency

No DFA Yes Conflict resolution
tables

TURTLE-P [3] MSCs Not
specified

Consistency No Not
specified

Yes Property
checking

Ultimate Req-
Analyzer [55]

Structured
NL

Ultimate
Automizer

Consistency, rt-
consistency[55],
vacuity

Yes PEA,
graphs

Yes Small subsets of
troubled
requirements

VARED [6] NL SMV,
InVeriant

Consistency,
vacuity

No LTL, linear
hybrid
automata

No Tool support for
building state
model

Wahler et al.
[100]

UML/OCL Custom
heuristics

Consistency No FOL Yes Scalable,
polynomial-time
algorithms

Walter et al.
[102]

Structured
NL

Custom
algorithm

Redundancy No SPS, LTL,
FOL

Yes NA

ST-Tool [41] Graphical ASSAT,
Cmodels,
DLV,
Smodels

Consistency,
correctness

No Datalog Yes Security property
checking, GUI

Table 1: Comparison of tools discovered in our search (continued).

requirements analysis tools. We note that [79] is a nice complement
to this paper, as it discusses approaches (e.g. Z-method, B-method)
that are not as emphasized in this paper. Additionally, [69] and
[107] are more recent, but are domain-specific. For example, [69]
focuses on formal methods in requirements engineering specifically
for security, which has its own additional set of challenges, while
[107] centers on industrial cyber-physical systems. Moreover, [107]

focuses more on semi-formal methods (e.g., requirements manage-
ment and adoption of industrial standards), which are outside the
scope of this paper.

6 CONCLUSION
We have presented a variety of formal methods tools from the liter-
ature for requirements capture and analysis. They exhibit consider-
able variation in terms of input language and analysis capabilities,
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and many tools have been applied in large-scale case studies. The
use of unrestricted NL with new AI-based front-ends is an active
frontier of research and is a green area for new progress in terms
of tool usability. Additionally, the use of richer formalisms (e.g.,
MTL and STL) that allow the specification and analysis of richer
properties is an active area of work. Finally, there is still much room
to rigorously and scientifically study tool usability and scalability
such that greater benefits can be reaped in an industrial setting.
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